

massiverLEICHTBAU

(Lightweight Forging)

www.massiverLEICHTBAU.de

Phase I Passenger Car, 2013 – 2014

Lightweight Forging ...

... in the powertrain and chassis of a car

Systematic overview of previous automotive lightweight design projects ...

	Project	Year	94	95	96	97	98	99	00	01	02	03	04	05	06	07	08	09	10	11	12	13	Consortium (Lead)
	ULSAB UltraLight Steel Auto Body																						WorldAutoSteel
	ULSAS UltraLight Steel Auto Suspension																						WorldAutoSteel
	ULSAC UltraLight Steel Auto Closures																						WorldAutoSteel
LSDAM? Alexand Webb Carego	ULSAB-AVC UltraLight Steel Auto Body – Advanced Vehicle Technology																						WorldAutoSteel
NSB [®]	NewSteelBody																						ТКЅ
(SuperLightCar)	SuperLIGHT-Car Sustainable Production Technologies for CO ₂ Emission Reduced Lightweight Car Conco	epts																					EUCAR
Ir Car°	InCar Innovative Car																						TKS
FutureSteelVehicle	FutureSteelVehicle															I							WorldAutoSteel
FEV	LDV Mass Reduction Light-Duty Vehicle Mass Reduction and Cost Analysis – Midsize Crossover Utility Vehicle	2																					FEV / EDAG
	CULT Cars' Ultralight Technologies																						Magna

... Focus to date on sheet metal forming and car body

Automotive Lightweight Design with Forging

- Projects to date have focused exclusively on the car body and on lightweight design solutions based on sheet metal
- An area which has seldom been considered so far is the lightweight design potential in the powertrain and chassis
- In **The Lightweight Forging Initiative**, the steel manufacture and forging industries present lightweight design concepts relating to design, material and production engineering
- Unique cooperation between manufacturers and component suppliers in the entire process chain for wire and bar products
- Demonstrating solutions, the success of which may be measured with respect to lightweight design, cost and implementation potential
- Lightweight design proposals of the supplier relating to material or production engineering are particularly effective if they flow into the early phase of part design

Clear reduction in energy consumption and CO₂ emissions possible through NEW lightweight design solutions with innovative, forged steel components

Reversal of the weight spiral through lightweight design in the powertrain and chassis

Increasing demands placed on ...

- vehicle concepts
- Focus on car body
- **Top-Down** approach

- production know-how
- Focus on powertrain and chassis
- Bottom-Up approach

24 Partners form The Lightweight Forging Initiative

Project Procedure – 1

Structure of the lightweight design potential study:

Context Analysis

A systematic overview of previous lightweight design potential in the powertrain and chassis is available.

Benchmarking

A reference vehicle was systematically disassembled, documented and recorded.

1. Determining the total vehicle weight

Reference Vehicle: 125 kW / 170 PS 2.0 | Turbo-DI diesel engine Double-clutch transmission, all-wheel drive Total mass: 1,740 kg

2. Disassembling the entire vehicle

Combustion engine

mission

Chassis

Door, seat, seatbelt, tow coupling

3. Listing and naming all individual parts

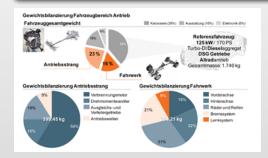
4. Analysis of individual parts

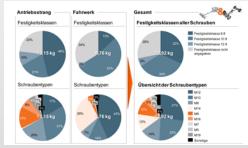
Trans-

Bauteilcode 💌	Bezeichnung	Gewicht [kg]	* [m	9 [m-	z [mm	Bauteil v erkstoff
22202010112	Ölablassschraube (Typ 1) Gehäuse Differential	0,0278	16	16	40	Stahl
22202010113	Differentialträger	5,62	143	252	143	Stahl
22202010114	Kegelrollenlager 1 Differentialträger	0,1968	70	19	70	Stahl
22202010115	Lagerschale Kegelrollenlager 1 Differentialträger	0,0941	75	14	75	Stahl
22202010116	Distanzscheibe Lagerschale Kegelrollenlager 1	0,0143	75	2	75	Stahl
22202010117	Radialwellendichtring (Typ 1) Kegelrollenlager 1	0,0292	83	8	83	Stahl/Kunststoff
22202010118	Kegelrollenlager 2 Differentialträger	0,2865	84	20	84	Stahl
22202010119	Lagerschale Kegelrollenlager 2	0,1328	89	14	89	Stahl
22202010120	Distanzscheibe Lagerschale Kegelrollenlager 2	0,0213	89	2	89	Stahl
22202010121	Radialwellendichtring (Typ 1) Kegelrollenlager 2	0,0297	83	8	83	Stahl/Kunststoff

Project Procedure – 2

Structure of the lightweight design potential study:


Three hands-on workshops


Facilitated workshops on the drive, chassis and other components.

Gathering ideas and deriving lightweight design potential from these

Previously unknown lightweight design potential has been identified on forged components in a car and translated into concrete lightweight design proposals.

5. Weight of assemblies

6. Photo documentation

- ISO views
- Detailed views
- Installation position, where necessary
- Digital removal of manufacturer logo

7. Database implementation with proposals for lightweight design potential

tarbada	22302010002 - Kardanw	relle (Teil 2)		fka
	Fahrpag	Referenzfahrzeug Mittelkiasse (2012)	CHILSON CONTRACTOR	mandrer LEO/TEA
autoria M	Bereich.	2000000000 - Arman		
le Vorschilge	Dystempraper.	2200000000 - Kafuterhaping		Propertiellung
	Parmituringrappe	12300000000 - Artheburghen	2222	Dati ng Dati Mini ng Christian Small
sweitung	Desgrape	222022000000 · Kandarwole		annelik fina da
reating	Unitergruppe 1.	22302010000 - Kardanetie		Teacher
	Dauleri.	22362010062 - Kardanwole (Tel 2)		Benchmarking
	Gewitte	5.16 kg		Dark States
	Large	1.505 mm		anternal haute
	drude .	120 mm		Teacher
	HONE	107 mm		Technicular Support
	Sadelan Island	State		Sebastar Route
	Massivumformleit	televose (50.00%)		concluding in
	Massivumformung Puterstat	50.00%		Selectedates
	Langprochat	nem		Parachargegeselectual
	Verfahren.	Schmeden + Zenganen + Induktionshärten		Rodination and Australia Decision to take 1 COTA Applies
	Materialicities.	2,61.4		Teacher
	Komponenten Vorschäge (*)	Belar Dateurs		andinan asalan
	Standardansichten			

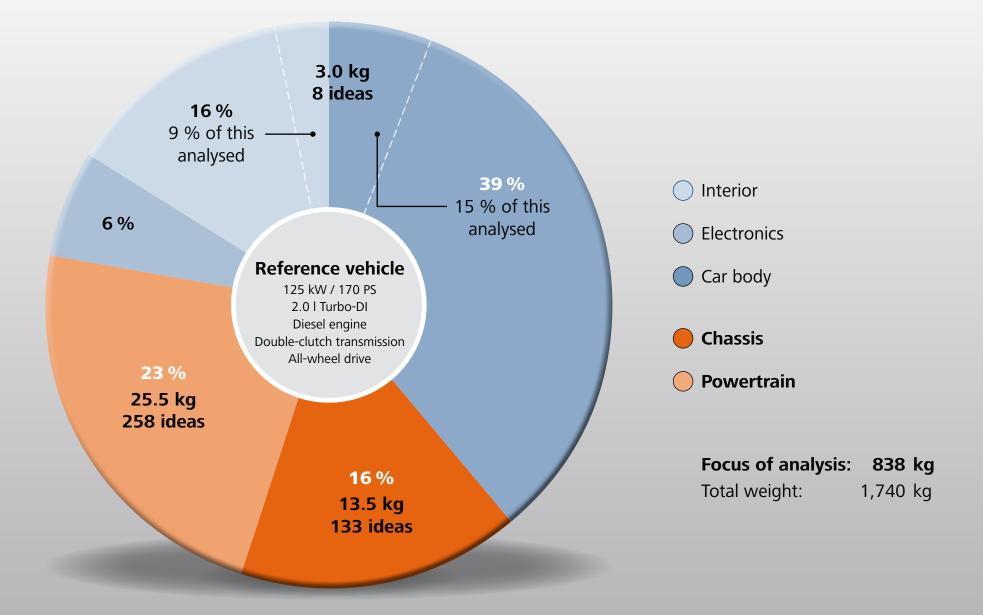
Three workshops with a total of 65 experts from 30 companies and research institutions Analysis of approx. 3,500 parts from the powertrain, chassis and other selected components Formulation of **399 lightweight design ideas**, which may be subdivided into different lightweight categories

Main documentation in the **benchmarking** database

In total, a feasible lightweight design potential of 42 kg has been identified for the areas under consideration

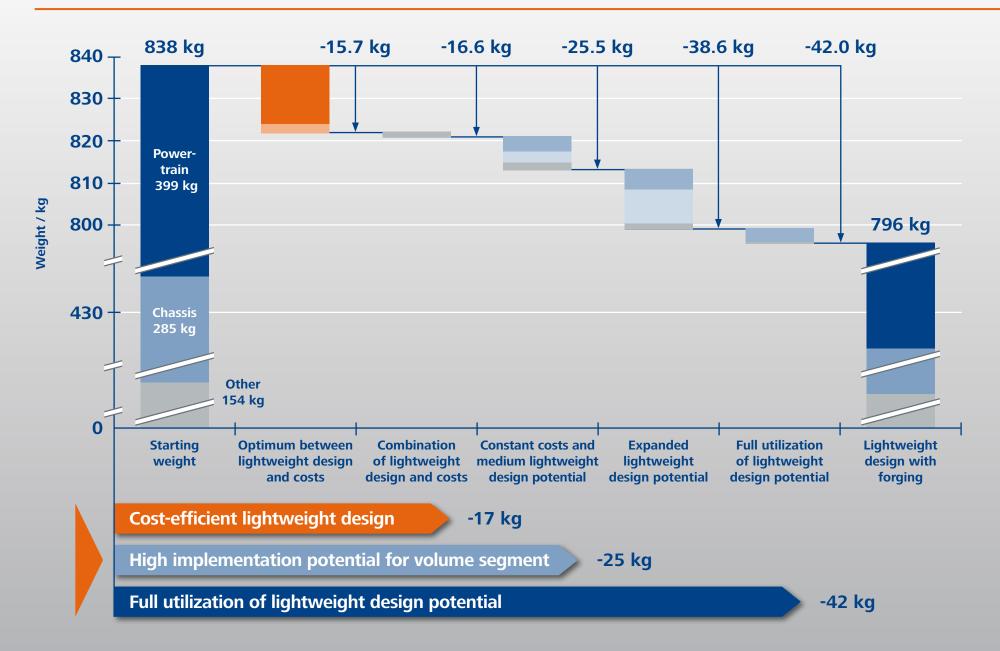
Evaluation of the 399 Ideas

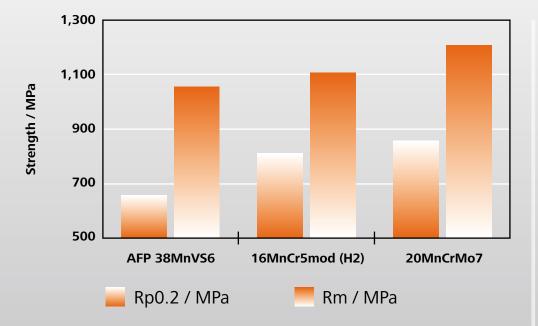
Material lightweight design / Alternative material use Lightweight structures and lightweight manufacturing

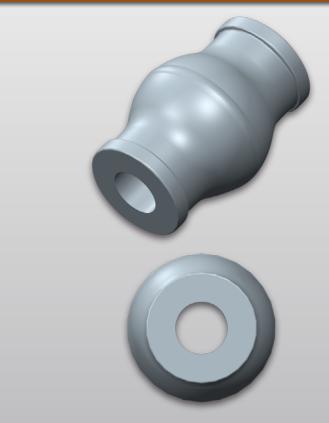

Conceptual lightweight design

- Approx. **33** % of the lightweight design ideas involve alternative material use
- Recommendation:
 Additional analysis of lightweight design potential through material lightweight design as part of an AiF research project (AiF is an alliance of research associations in Germany)
- Approx. 75 % of the lightweight ideas involve adapted structural designs and are based on the use of forging suitable for large serial production
- Recommendation:
 Intensive communication of the results with customers for establishing the lightweight ideas in serial production

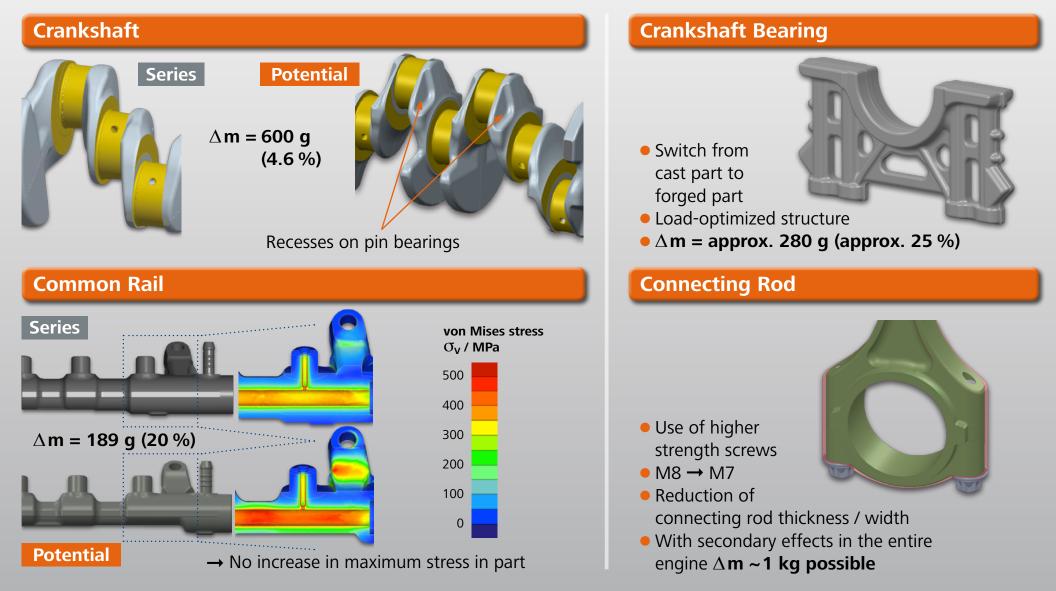
- Approx. 6 % of the lightweight design ideas involve innovative concepts
- Recommendation: Intensive communication and additional analysis of the technical feasibility of particularly innovative concepts


Overview of Car Weight


Portfolio Chart of the Lightweight Design Ideas

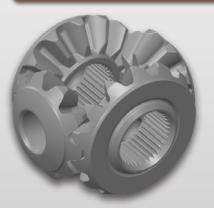

Material Lightweight Design

- Use of bainitic instead of dispersion-hardening steel
- Higher strength at higher toughness level
- ∆ m >10 %


Chassis bearing

- Material substitution steel → aluminium
- Hollow design

Lightweight Design in the Engine

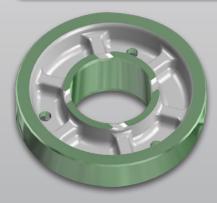


Source: CDP BHARAT FORGE, Hammerwerk Fridingen, Kamax, Hirschvogel

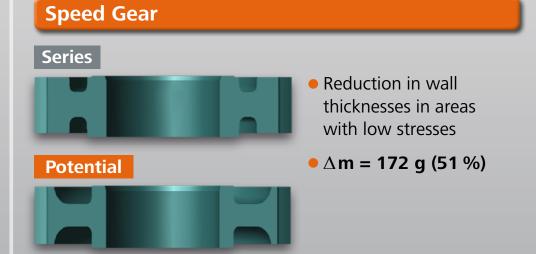
Lightweight Design: Transmission

Differential Pinions

Increased load-bearing capacity through

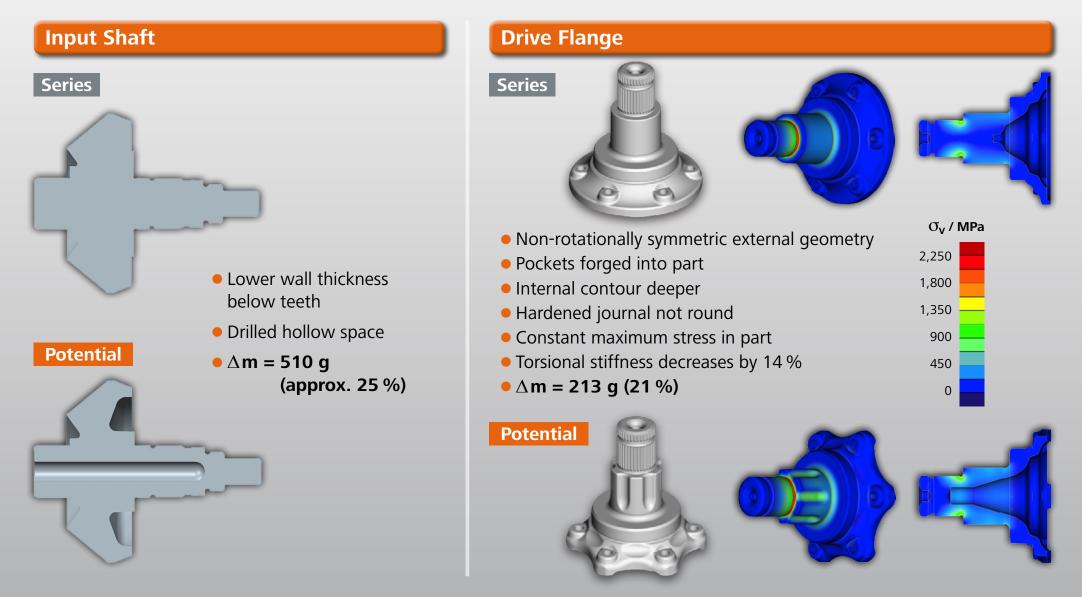

- further developed gear geometries
- connection of the teeth to the flange

Speed Gear

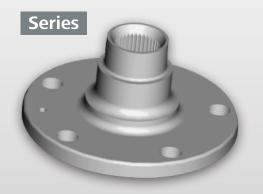


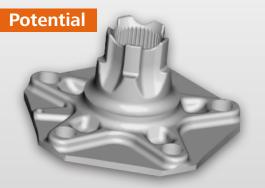
- Non-rotationally symmetric geometry
- Piercings

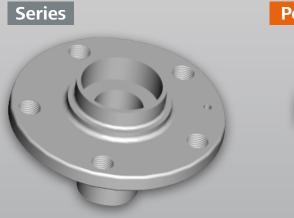
Speed Gear

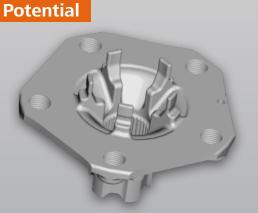


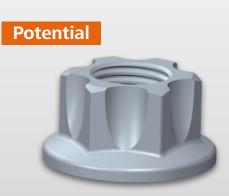
- Stiffening radial arms
- Deep pockets
- Thin wall thicknesses

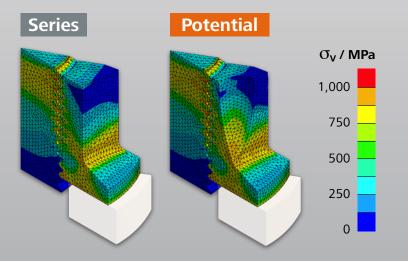


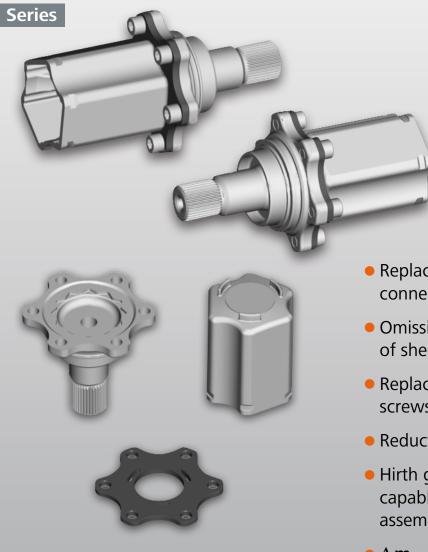

Lightweight Design: Other Areas of the Powertrain




Lightweight Design: Chassis and Fastening Technology




- Non-rotationally symmetric external geometry
- Journal with recesses
- Wheel rim centering via contact surfaces instead of via ring
- Stiffness optimized internal and flange contour
- ∆m = 717 g (67 %)



- Recesses at sites without functional relevance
- Verification of strength in simulation and test
- ∆ m = 5.6 g (16 %)



Conceptual Lightweight Design

- Omission of welded connection of sheet metal flange / tripod
- Replacement of six individual screws with union nut
- Reduction in assembly efforts
- Hirth gear is proven to be highly capable of bearing loads in a small assembly space
- △ m = 828 g (33.5 %)

